Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition.
Kevin WhithamTobias HanrathPublished in: The journal of physical chemistry letters (2017)
The formation of epitaxially connected quantum dot solids involves a complex interplay of interfacial assembly, surface chemistry, and irreversible-directed attachment. We describe the basic mechanism in the context of a coherent phase transition with distinct nucleation and propagation steps. The proposed mechanism explains how defects in the preassembled structure influence nucleation and how basic geometric relationships govern the transformation from hexagonal assemblies of isolated dots to interconnected solids with square symmetry. We anticipate that new mechanistic insights will guide future advances in the formation of high-fidelity quantum dot solids with enhanced grain size, interconnectivity, and control over polymorph structures.