Login / Signup

Accelerating σ-Bond Metathesis at Sn(II) Centers.

Richard Y KongJoseph B ParryGuy R AnelloMatthew E OngKyle M Lancaster
Published in: Journal of the American Chemical Society (2023)
Molecular main-group hydride catalysts are attractive as cheap and Earth-abundant alternatives to transition-metal analogues. In the case of the latter, specific steric and electronic tuning of the metal center through ligand choice has enabled the iterative and rational development of superior catalysts. Analogously, a deeper understanding of electronic structure-activity relationships for molecular main-group hydrides should facilitate the development of superior main-group hydride catalysts. Herein, we report a modular Sn-Ni bimetallic system in which we systematically vary the ancillary ligand on Ni, which, in turn, tunes the Sn center. This tuning is probed using Sn L 1 XAS as a measure of electron density at the Sn center. We demonstrate that increased electron density at Sn centers accelerates the rate of σ-bond metathesis, and we employ this understanding to develop a highly active Sn-based catalyst for the hydroboration of CO 2 using pinacolborane. Additionally, we demonstrate that engineering London dispersion interactions within the secondary coordination sphere of Sn allows for further rate acceleration. These results show that the electronics of main-group catalysts can be controlled without the competing effects of geometry perturbations and that this manifests in substantial reactivity differences.
Keyphrases
  • transition metal
  • highly efficient
  • metal organic framework
  • magnetic resonance imaging
  • single molecule
  • gold nanoparticles
  • solar cells
  • electron microscopy
  • electron transfer