[Phylogenetic groups and virulence genes of Escherichia coli strains isolated from the children gut microbiota.]
L V SuzhaevaM A MakarovaL A KaftyrevaPublished in: Klinicheskaia laboratornaia diagnostika (2020)
Escherichia coli is characterized by a wide intraspecific diversity. The species includes both commensals and pathogens that cause diarrhea and extra-intestinal diseases. Pathogenic strains differ from non-pathogenic ones by the presence of virulence factors and their genes. The phylogenetic structure of the species is represented by four main groups (A, B1, B2, D), which differ in their prevalence among residents of different geographical regions. Pathogenic members of the species have been studied in detail, while non-pathogenic strains have not received such attention. This report presents the results of a study of 511 E. coli strains isolated from the gut microbiota of children without diarrhea and urinary tract infections, aged from 1 month to 17 years, living in St. Petersburg. The main phylogenetic groups were determined by PCR, and E. coli virulence genes associated with diarrhea and extra-intestinal diseases were identified. Results: population structure of E. coli is represented by the following groups: A-33.3%, B1-6.7%, B2-34.0%, D-26%. In the studied population 2.5% of strains belonded to EPEC and 4.5% to EAggEC. EPEC virulence genes were more often detected in strains of phylogroup B1, and EAggEC virulence genes in isolates of phylogroup D. The prevalence of extra - intestinal virulence genes was as follows: pap - 29.5%; sfa - 19.8%; afa - 3.3%; hly - 20.9%; cnf - 17.4%; aer-20.0%. The pap, sfa, hly, and cnf genes were detected mostly in the B2 phylogenetic group. Obtained data shows the similarity of E. coli phylogenetic groups structure in St. Petersburg with E. coli populations isolated from residents of Paris and Sydney. Analysis of the virulence genes prevalence showed the dependence of their presence on the genetic background bacteria.
Keyphrases
- escherichia coli
- genome wide
- biofilm formation
- genome wide identification
- bioinformatics analysis
- klebsiella pneumoniae
- risk factors
- pseudomonas aeruginosa
- staphylococcus aureus
- urinary tract infection
- antimicrobial resistance
- dna methylation
- gene expression
- genome wide analysis
- working memory
- transcription factor
- irritable bowel syndrome
- electronic health record
- data analysis