Login / Signup

Effects of Group-I Elements on Output Voltage Generation of ZnO Nanowires Based Nanogenerator; Degradation of Screening Effects by Oxidation of Nanowires.

Mansoor AhmadM K AhmadMohamad Hafiz MamatA MohamedA B SurianiN M A N IsmailChin Fhong SoonNafarizal Nayan
Published in: Micromachines (2022)
Here, we report the successful incorporation of group I elements (K, Na, Li) to ZnO nanowires. Three distinct (2, 4, and 6 wt.%) doping concentrations of group I elements have been used to generate high piezoelectric voltage by employing a vertically integrated nanowire generator (VING) structure. X-ray photoelectron spectra (XPS) indicated the seepage of dopants in ZnO nanowires by substitution of Zn. Shallow acceptor levels (Li Zn , Na Zn , K Zn ) worked as electron trapping centers for intrinsically n-type ZnO nanowires. Free moving electrons caused a leakage current through the nanowires and depleted their piezoelectric potential. Reverse leakage current is a negative factor for piezoelectric nanogenerators. A reduction in reverse leakage current signifies the rise in output voltage. A gradual rise in output voltage has been witnessed which was in accordance with various doping concentrations. K-doped ZnO nanowires have generated voltages of 0.85 V, 1.48 V, and 1.95 V. For Na-doped ZnO nanowires, the voltages were 1.23 V, 1.73 V, and 2.34 V and the voltages yeilded for Li-doped ZnO nanowires were 1.87 V, 2.63 V, and 3.54 V, respectively. Maximum voltage range has been further enhanced by the surface enrichment (oxidized with O 2 molecules) of ZnO nanowires. Technique has been opted to mitigate the screening effect during an external stress. After 5 h of oxidation in a sealed chamber at 100 ppm, maximum voltage peaks were pronounced to 2.48 V, 3.19 V, and 4.57 V for K, Na, and Li, respectively. A low-cost, high performance mechanical transducer is proposed for self-powered devices.
Keyphrases