Login / Signup

Ultrafast Fluorescence Depolarization in Conjugated Polymers.

Isabel Gonzalvez PerezWilliam Barford
Published in: The journal of physical chemistry letters (2021)
We report on large-scale simulations of intrachain exciton dynamics in poly(para-phenylenevinylene). Our theoretical model describes Frenkel exciton coupling to both fast, quantized C-C bond vibrations and slow, classical torsional modes. We also incorporate system-bath interactions. The dynamics is simulated using the time evolution block decimation method, which avoids the failures of the Ehrenfest approximation to describe decoherence processes and nonadiabatic interstate conversion. System-bath interactions are modeled using quantum trajectories and Lindblad quantum jump operators. We find that following photoexcitation, the quantum mechanical entanglement of the exciton and C-C bond phonons causes exciton-site decoherence. Next, system-bath interactions cause the stochastic collapse of high-energy delocalized excitons into chromophores. Finally, torsional relaxation causes additional exciton-density localization. We relate these dynamical processes to the predicted fluorescence depolarization, extract the time scales corresponding to them, and thus interpret the observed sub-ps fluorescence depolarization.
Keyphrases
  • energy transfer
  • quantum dots
  • molecular dynamics
  • depressive symptoms
  • oxidative stress
  • density functional theory
  • room temperature
  • anti inflammatory
  • monte carlo