Login / Signup

Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery.

Thangaian KesavanThamodaran PartheebanMurugan VivekananthaNatarajan PrabuManab KunduPremkumar SelvarajanSiva UmapathyAjayan VinuManickam Sasidharan
Published in: ACS applied materials & interfaces (2020)
Herein, we demonstrate a simple and unique strategy for the preparation of P-doped into the substructure of mesoporous carbon nitride materials (P-MCN-1) with ordered porous structures as a high-energy and high-power Li-ion battery (LIB) anode. The P-MCN-1 as an anode in LIB delivers a high reversible discharge capacity of 963 mAh g-1 even after 1000 cycles at a current density of 1 A g-1, which is much higher than that of other counterparts comprising s-triazine (C3H3N3, g-C3N4), pristine MCN-1, and B-containing MCN-1 (B-MCN-1) subunits or carbon allotropes like CNT and graphene (rGO) materials. The P-MCN-1 electrode also exhibits exceptional rate capability even at high current densities of 5, 10, and 20 A g-1 delivering 685, 539, and 274 mAh g-1, respectively, after 2500 cycles. The high electrical conductivity and Li-ion diffusivity (D), estimated from electrochemical impedance spectra (EIS), very well support the extraordinary electrochemical performance of the P-MCN-1. Higher formation energy, lower bandgap value, and high Li-ion adsorption ability predicted by first principle calculations of P-MCN-1 are in good agreement with experimentally observed high lithium storage, stable cycle life, high power capability, and minimal irreversible capacity (IRC) loss. To the best of our knowledge, it is an entirely new material with the combination of ordered mesostructures with P codoping in carbon nitride substructure which offers superior performance for LIB, and hence we believe that this work will create new momentum for the design and development of clean energy storage devices.
Keyphrases