Organic pollutants can alter the physicochemical properties and microbial communities of water bodies. In water contaminated with organic pollutants, the unique extracellular electron transfer mechanisms that promote sulfamethoxazole (SMX) degradation in tri-electrode microbial electrochemical systems (TE-MES) may be impacted. To simulate biodegradable organic matter contamination, glucose (GLU) was added. Metagenomics and metabolomics were used to analyze changes in microbial community structure, metabolism, and function on the electrodes. GLU addition accelerated water quality deterioration, and enhanced SMX degradation. Microbial taxa on the electrodes experienced selective enrichment. Notably, methanogens and SMX-degrading bacteria were enriched, while denitrifying bacteria and antibiotic-resistant bacteria were suppressed. Enriched metabolites were linked to 15 metabolic pathways and other functions like microbial signaling and genetics. Non-redundant genes also clustered in metabolic pathways, aligning with metabolite enrichment results. Additional pathways involved life cycle processes and protein interactions. Enzymes related to carbon metabolism, particularly glycoside hydrolases, increased significantly, indicating a shift in carbon metabolism on microbial electrodes after GLU addition. The abundance of intracellular electron transfer enzymes rose, while outer membrane proteins decreased. This contrasts with the typical TE-MES mechanism where outer membrane proteins facilitate SMX degradation. The presence of organic pollution may shift SMX degradation from an extracellular electrochemical process to an intracellular metabolic process, possibly involving co-metabolism with simple organic compounds. This study provides mechanistic insights and theoretical guidance for using TE-MES with embedded microbial electrodes to treat antibiotic-contaminated water affected by organic pollution.
Keyphrases
- microbial community
- electron transfer
- heavy metals
- antibiotic resistance genes
- water quality
- risk assessment
- carbon nanotubes
- human health
- drinking water
- health risk assessment
- particulate matter
- solid state
- ionic liquid
- organic matter
- drug delivery
- dna methylation
- skeletal muscle
- molecularly imprinted
- high resolution
- genome wide
- mass spectrometry
- reactive oxygen species
- blood glucose
- label free
- bioinformatics analysis