In enantiomer recognition and separation, a highly enantioselective approach with universal applicability is urgently desired but hard to realize, especially in the case of chiral molecules. To resolve the trade-off between enantioselectivity and universality, a glutathione (GSH) and methylated cyclodextrins (MCD)-functionalized covalent organic framework (GSH-MCD COF) with porosity and abundant chiral surfaces is presented that was designed and synthesized for recognition and separation of various enantiomers. As expected, the GSH-MCD COF can be used as chiral stationary phases for the separation of various enantiomers, including aromatic alcohols, aromatic acids, amides, amino acids, and organic acids, with performance and versatility even superior to some widely used commercial chiral chromatographic columns. Furthermore, the synthesized GSH-MCD COF shows high enantioselectivity for the rapid recognition and identification of enantiomers and chiral metabolites when coupling to Raman spectroscopy. Molecular simulations suggest that the COF provides a confined microenvironment for cyclodextrins and peptides that dictates the separation and recognition capability. This work provides a strategy to synthesize synergetic multichiral COF and achieve separations and recognitions of enantiomers in complex samples.