Login / Signup

Engineering cellular communication between light-activated synthetic cells and bacteria.

Jefferson M SmithDenis HartmannMichael J Booth
Published in: Nature chemical biology (2023)
Gene-expressing compartments assembled from simple, modular parts, are a versatile platform for creating minimal synthetic cells with life-like functions. By incorporating gene regulatory motifs into their encapsulated DNA templates, in situ gene expression and, thereby, synthetic cell function can be controlled according to specific stimuli. In this work, cell-free protein synthesis within synthetic cells was controlled using light by encoding genes of interest on light-activated DNA templates. Light-activated DNA contained a photocleavable blockade within the T7 promoter region that tightly repressed transcription until the blocking groups were removed with ultraviolet light. In this way, synthetic cells were activated remotely, in a spatiotemporally controlled manner. By applying this strategy to the expression of an acyl homoserine lactone synthase, BjaI, quorum-sensing-based communication between synthetic cells and bacteria was controlled with light. This work provides a framework for the remote-controlled production and delivery of small molecules from nonliving matter to living matter, with applications in biology and medicine.
Keyphrases
  • induced apoptosis
  • cell free
  • gene expression
  • cell cycle arrest
  • endoplasmic reticulum stress
  • single molecule
  • transcription factor
  • genome wide
  • signaling pathway
  • copy number
  • nucleic acid