Login / Signup

F-Halogen Bond: Conditions for Its Existence.

Steve Scheiner
Published in: The journal of physical chemistry. A (2020)
The question as to whether the F atom can engage in a halogen bond (XB) remains unsettled. This issue is addressed via density functional theory calculations which pair a wide range of organic and inorganic F-acids with various sorts of Lewis bases. From an energetic perspective, perfluorinated hydrocarbons with sp, sp2, or sp3 C-hybridization are unable to form an XB with an N-base, but a very weak bond can be formed if electron-withdrawing C≡N substituents are added to the acid. There is little improvement for inorganic acids O2NF, FOF, ClF, BrF, SiF4, or GeF4, but F2 is capable of a stronger XB of up to 5 kcal/mol. These results are consistent with a geometric criterion, which compares the intermolecular equilibrium distance with the sum of atomic van der Waals radii. The intensity of the σ-hole on the F atom has predictive value in that a Vs,max of at least 10-15 kcal/mol is required for XB formation. Adding a positive charge to the Lewis acid enhances the strength of any XB and even more so if the base is anionic. The acid-base interaction induces a contraction of the r(AF) covalent bond in the acid in most cases and a deshielding of the NMR signal of the F nucleus.
Keyphrases