Login / Signup

Determination of the resistivity anisotropy of orthorhombic materials via transverse resistivity measurements.

P WalmsleyIan R Fisher
Published in: The Review of scientific instruments (2018)
Measurements of the resistivity anisotropy can provide crucial information about the electronic structure and scattering processes in anisotropic and low-dimensional materials, but quantitative measurements by conventional means often suffer very significant systematic errors. Here we describe a novel approach to measuring the resistivity anisotropy of orthorhombic materials, using a single crystal and a single measurement that is derived from a π4 rotation of the measurement frame relative to the crystallographic axes. In this new basis, the transverse resistivity gives a direct measurement of the resistivity anisotropy, which combined with the longitudinal resistivity also gives the in-plane elements of the conventional resistivity tensor via a 5-point contact geometry. This is demonstrated through application to the charge-density wave compound ErTe3, and it is concluded that this method presents a significant improvement on existing techniques, particularly when measuring small anisotropies.
Keyphrases
  • emergency department
  • patient safety
  • solid phase extraction
  • electronic health record