Synthesis, SAR studies, and insecticidal activities of certain N-heterocycles derived from 3-((2-chloroquinolin-3-yl)methylene)-5-phenylfuran-2(3 H )-one against Culex pipiens L. larvae.
Sayed K RamadanDoaa R Abdel HaleemHisham S M Abd-RabbohNourhan M GadWael S I Abou-ElmagdDavid S A HaneenPublished in: RSC advances (2022)
An acid hydrazide derivative was synthesized and transformed into a variety of valuable N-heterocycles such as pyridazinone, oxadiazole, triazolopyridazinone, and triazole derivatives via reactions with certain carbon electrophiles such as 4-methoxybenzaldehyde, indole-3-carbaldehyde, pentan-2,4-dione, and carbon disulfide. The chemical structures of all prepared compounds were verified via their analytical and spectroscopic data. The insecticidal activity of the N-heterocycles was evaluated against field and lab strains of the third larval instar of Culex pipiens . All tested compounds exhibited higher larvicidal activity against the lab strains compared to the field strains, with dissimilar ratios. The obtained results demonstrate that the high toxicity achieved by oxadiazole followed the order of furanone, pyridazinone and hydrazide, with lower LC 50 values of the hydrazone and N -acetylpyridazinone derivatives compared to that of imidacloprid. Interestingly, these compounds are promising agents for insect pest control, especially since they are insoluble in water and can overcome the disadvantages of neonicotinoid applications in pest management programs.