Theoretical Analysis for Wireless Magnetothermal Deep Brain Stimulation Using Commercial Nanoparticles.
Tuan-Anh LeMinh Phu BuiJungwon YoonPublished in: International journal of molecular sciences (2019)
A wireless magnetothermal stimulation (WMS) is suggested as a fast, tetherless, and implanted device-free stimulation method using low-radio frequency (100 kHz to 1 MHz) alternating magnetic fields (AMF). As magnetic nanoparticles (MNPs) can transduce alternating magnetic fields into heat, they are targeted to a region of the brain expressing the temperature-sensitive ion channel (TRPV1). The local temperature of the targeted area is increased up to 44 °C to open the TRPV1 channels and cause an influx of Ca2+ sensitive promoter, which can activate individual neurons inside the brain. The WMS has initially succeeded in showing the potential of thermomagnetics for the remote control of neural cell activity with MNPs that are internally targeted to the brain. In this paper, by using the steady-state temperature rise defined by Fourier's law, the bio-heat equation, and COMSOL Multiphysics software, we investigate most of the basic parameters such as the specific loss power (SLP) of MNPs, the injection volume of magnetic fluid, stimulation and cooling times, and cytotoxic effects at high temperatures (43-44 °C) to provide a realizable design guideline for WMS.
Keyphrases
- deep brain stimulation
- resting state
- white matter
- cancer therapy
- magnetic nanoparticles
- molecularly imprinted
- parkinson disease
- functional connectivity
- obsessive compulsive disorder
- cerebral ischemia
- dna methylation
- neuropathic pain
- gene expression
- heat stress
- high frequency
- transcription factor
- spinal cord
- minimally invasive
- stem cells
- blood brain barrier
- cell therapy
- drug delivery
- human health
- risk assessment
- spinal cord injury
- brain injury
- high resolution
- solid phase extraction
- climate change