Examining the Differential Role of General and Specific Processing Speed in Predicting Mathematical Achievement in Junior High School.
Xinlin ZhouKaihui ShiNaiyi WangXinyang MiaoXinlin ZhouPublished in: Journal of Intelligence (2021)
Processing speed is divided into general (including perceptual speed and decision speed) and specific processing speed (including reading fluency and arithmetic fluency). Despite several study findings reporting the association between processing speed and children's mathematical achievement, it is still unclear whether general or specific processing speed differentially predicts mathematical achievement. The current study aimed to examine the role of general and specific processing speed in predicting mathematical achievements of junior high school students. Cognitive testing was performed in 212 junior school students at the beginning of the 7th grade year, along with assessment of general and specific processing speed. Relevant academic achievement scores were also recorded at the end of the 7th and 9th grade years. Hierarchical regression analyses showed that specific processing speed made a significant unique contribution in mathematical achievement by the end of the 7th grade and could significantly predict mathematical achievements in the high school entrance examinations by end of the 9th grade after controlling for age, gender, and general cognitive abilities. However, general processing speed could not predict mathematical achievements. Moreover, specific processing speed could significantly predict all academic achievements for both the 7th and 9th grade. These results demonstrated that specific processing speed, rather than general processing speed, was able to predict mathematical achievement and made a generalised contribution to all academic achievements in junior school. These findings suggest that specific processing speed could be a reflection of academic fluency and is therefore critical for long-term academic development.