Login / Signup

Memristor-based storage system with convolutional autoencoder-based image compression network.

Yulin FengYizhou ZhangZheng ZhouPeng HuangLifeng LiuXiaoyan LiuJinfeng Kang
Published in: Nature communications (2024)
The exponential growth of various complex images is putting tremendous pressure on storage systems. Here, we propose a memristor-based storage system with an integrated near-storage in-memory computing-based convolutional autoencoder compression network to boost the energy efficiency and speed of the image compression/retrieval and improve the storage density. We adopt the 4-bit memristor arrays to experimentally demonstrate the functions of the system. We propose a step-by-step quantization aware training scheme and an equivalent transformation for transpose convolution to improve the system performance. The system exhibits a high (>33 dB) peak signal-to-noise ratio in the compression and decompression of the ImageNet and Kodak24 datasets. Benchmark comparison results show that the 4-bit memristor-based storage system could reduce the latency and energy consumption by over 20×/5.6× and 180×/91×, respectively, compared with the server-grade central processing unit-based/the graphics processing unit-based processing system, and improve the storage density by more than 3 times.
Keyphrases
  • deep learning
  • small molecule
  • air pollution
  • working memory
  • optical coherence tomography