Login / Signup

Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces.

Siyu DuanFeng QinPeng ChenXupeng YangCaiyu QiuJunwei HuangGan LiuZeya LiXiangyu BiFanhao MengXiaoxiang XiJie YaoToshiya IdeueBiao LianYoshihiro IwasaHongtao Yuan
Published in: Nature nanotechnology (2023)
The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The theoretical rationale is that the BCD can be generated at certain symmetry-mismatched van der Waals heterointerfaces even though each material has no BCD in its band structure. However, experimental confirmation of such a BCD induced via breaking of the interfacial symmetry remains elusive. Here we demonstrate a universal strategy for BCD generation and observe BCD-induced gate-tunable spin-polarized photocurrent at WSe 2 /SiP interfaces. Although the rotational symmetry of each material prohibits the generation of spin photocurrent under normal incidence of light, we surprisingly observe a direction-selective spin photocurrent at the WSe 2 /SiP heterointerface with a twist angle of 0°, whose amplitude is electrically tunable with the BCD magnitude. Our results highlight a BCD-spin-valley correlation and provide a universal approach for engineering the geometric features of twisted heterointerfaces.
Keyphrases
  • room temperature
  • density functional theory
  • single molecule
  • high glucose
  • diabetic rats
  • transition metal
  • ionic liquid
  • molecular dynamics
  • clinical trial
  • oxidative stress
  • endothelial cells
  • resting state