The flexible, transparent, and low-weight nature of ferroelectric polymers makes them promising for wearable electronic and optical applications. To reach the full potential of the polarization-enabled device functionalities, large-scale fabrication of polymer thin films with well-controlled polar directions is called for, which remains a central challenge. The widely exploited Langmuir-Blodgett, spin-coating, and electrospinning methods only yield polymorphous or polycrystalline films, where the net polarization is compromised. Here, an easily scalable approach is reported to achieve poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) thin films composed of close-packed crystalline nanowires via interface-epitaxy with 1T'-ReS2 . Upon controlled thermal treatment, uniform P(VDF-TrFE) films restructure into about 10 and 35 nm-wide (010)-oriented nanowires that are crystallographically aligned with the underlying ReS2 , as revealed by high-resolution transmission electron microscopy. Piezoresponse force microscopy studies confirm the out-of-plane polar axis of the nanowire films and reveal coercive voltages as low as 0.1 V. Reversing the polarization can induce a conductance switching ratio of >108 in bilayer ReS2 , over six orders of magnitude higher than that achieved by an untreated polymer gate. This study points to a cost-effective route to large-scale processing of high-performance ferroelectric polymer thin films for flexible energy-efficient nanoelectronics.
Keyphrases
- room temperature
- high resolution
- ionic liquid
- electron microscopy
- single molecule
- high speed
- physical activity
- photodynamic therapy
- body mass index
- single cell
- gene expression
- weight loss
- heart rate
- gold nanoparticles
- weight gain
- reduced graphene oxide
- tissue engineering
- risk assessment
- replacement therapy
- case control