Login / Signup

Electrochemical Detection of Flutamide by the Composite of Complex Based on Thiacalix[4]arene Derivatives and Reduced Graphene Oxide.

Lu-Lu JiangXia NiuWen-Yuan PeiJian-Fang Ma
Published in: Inorganic chemistry (2023)
In this paper, a thiacalix[4]arene complex [Zn 2 (TIT4A)L 2 ]·4DMF·2CH 3 OH (H 2 L = 4,4'-oxybisbenzoic acid) (Zn-TIT4A-L) was synthesized by a solvothermal method. The composites were prepared by combining Zn-TIT4A-L with reduced graphene oxide (RGO), mesoporous carbon (MC), and multi-walled carbon nanotubes (MWCNTs), respectively. Three representative composites are Zn-TIT4A-L@RGO(1:1), Zn-TIT4A-L@MC(1:2), and Zn-TIT4A-L@MWCNT(1:2). X-ray diffraction and scanning electron microscopy characterized their structures and morphologies. The results showed that three composites were successfully prepared, and the crystals of the complex remained in the composites. The electrochemical properties of the composites were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicated that they had good electrocatalytic activity and conductivity. Among them, Zn-TIT4A-L@RGO(1:1) had the best performance and was used for the quantitative detection of flutamide (FTA). The linear range of detection is 0.1-200 μM, and the limit of detection is 0.015 μM. At the same time, the sensor also had good reproducibility, anti-interference, and stability. The sensor was also used for the detection of FTA in lake water, human urine, and serum with a satisfactory recovery rate. The possible mechanism of electrochemical detection of FTA was also discussed.
Keyphrases