Login / Signup

Conformational Flexibility of the Benzyl-Guanine Adduct in a Bypass Polymerase Active Site Permits Replication: Insights from Molecular Dynamics Simulations.

Katie A WilsonStacey D Wetmore
Published in: Chemical research in toxicology (2017)
Although translesion synthesis (TLS) polymerases play key roles in replicating DNA that contains nucleobase addition products (adducts), there are many unknowns about their function. The present work gains indispensable structural insights from molecular dynamics simulations on the replication of O6-benzyl-guanine (Bz-dG) prior to bond formation during dCTP insertion opposite the adduct by Dpo4. When combined with previous X-ray crystal structures of the Bz-dG extension complex, molecular details are now available for each stage during a single TLS replication cycle for this carcinogenic lesion. Our calculations illustrate that Bz-dG preferentially adopts an intercalated bulky moiety orientation in the Dpo4 preinsertion complex, which stabilizes the complex through Bz-dG interactions with the previously replicated 3'-base pair and positions the carcinogenic group in the dNTP binding site. Nevertheless, the maintained inherent flexibility of Bz-dG due to a stark lack of interactions with the polymerase or template DNA allows the bulky moiety to adopt a major groove position opposite an incoming dCTP in an orientation that is conducive for the experimentally observed nonmutagenic bypass. Comparison of Bz-dG and canonical dG replication clarifies that the experimentally observed decrease in dCTP binding affinity and replication efficiency upon adduct formation is likely caused by a combination of factors, including the required template nucleotide conformational change and destabilized template-dCTP hydrogen bonding. Although additional aspects of the replication process, such as the impact of the adduct on the nucleotidyl-transfer reaction, may also be important for fully rationalizing experimental replication data and must be considered in future work, the present contribution emphasizes the importance of considering the effect of DNA damage on the early stages of the TLS process.
Keyphrases