Login / Signup

Synthetic Semiconductor Photoelectrochemistry.

Yohei Okada
Published in: Chemical record (New York, N.Y.) (2021)
In the field of synthetic organic chemistry, photochemical and electrochemical approaches are often considered to be competing technologies that induce single electron transfer (SET). Recently, their fusion, i. e., the "photoelectrochemical" approach, has become the focus of attention. In this approach, both solar and electrical energy are used in creative combinations. Historically, the term "photoelectrochemistry" has been used in more inorganic fields, where a photovoltaic effect exhibited by semiconducting materials is employed. Semiconductors have also been studied intensively as photocatalysts; however, they recently have taken a back seat to molecular photocatalysts. In this account, we would like to revisit semiconductor photocatalysts in the field of synthetic organic chemistry to demonstrate that semiconductor "photoelectrochemical" approaches are more than mere alternatives to molecular photochemical and/or electrochemical approaches.
Keyphrases
  • visible light
  • electron transfer
  • label free
  • room temperature
  • gold nanoparticles
  • ionic liquid
  • quantum dots
  • water soluble
  • preterm infants
  • working memory
  • sensitive detection
  • drug discovery