With the rapid development of information technology, the encrypted storage of information is becoming increasingly important for human life. The luminescent materials with a color-changed response under physical or chemical stimuli are crucial for information coding and anticounterfeiting. However, traditional fluorescent materials usually face problems such as a lack of tunable fluorescence, insufficient surface-adaptive adhesion, and strict synthesis conditions, hindering their practical applications. Herein, a series of luminescent lanthanide hybrid organogels (Ln-MOGs) were rapidly synthesized using a simple method at room temperature through the coordination between lanthanide ions and 2,6-pyridinedicarboxylic acid and 5-aminoisophthalic acid. And the multicolor fluorescent inks were also prepared based on the Ln-MOG and hyaluronic acid, with the advantages of being easy to write, color-adjustable, and water-responsive discoloration, which has been applied to paper-based anticounterfeiting technology. Inspired by the responsiveness of the fluorescent inks to water, we designed a logic system that can realize single-input logic operations (NOT and PASS1) and double-input logic operations (NAND, AND, OR, NOR, XOR). The encryption of a binary code can be actualized utilizing different luminescent response modes based on the logic circuit system. By adjusting the energy sensitization and luminescence mechanism of lanthanide ions in the gel structure, the information reading and writing ability of the fluorescent inks were verified, which has great potential in the field of multicolor pattern anticounterfeiting and information encryption.
Keyphrases
- quantum dots
- energy transfer
- sensitive detection
- hyaluronic acid
- single molecule
- room temperature
- health information
- living cells
- metal organic framework
- mental health
- endothelial cells
- flow cytometry
- physical activity
- pseudomonas aeruginosa
- risk assessment
- escherichia coli
- fluorescent probe
- cell migration
- social media
- healthcare
- candida albicans
- biofilm formation