Login / Signup

GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species.

Venelina PopovaTanya IvanovaAlbena StoyanovaVioleta NikolovaTsveta HristevaValtcho D Zheljazkov
Published in: Molecules (Basel, Switzerland) (2020)
The genus Nicotiana (Solanaceae) includes over 70 species, with a long history of traditional use; many of them are nowadays used in bioengineering, biosynthesis, molecular biology, and other studies, while common tobacco, N. tabacum L., is one of the most economically important industrial crops worldwide. Although Nicotiana species have been extensively investigated, relatively less research has focused on flowers, especially research related to obtaining aromatic products for cosmetic and perfumery use. On the other hand, there is evidence that Nicotiana flowers accumulate various secondary metabolites with a distinct aroma and biological activities, and the flowers represent a biomass available in sufficient quantities. Therefore, this study aimed to determinate the chemical composition (by GC-MS) and the olfactory profiles of a specific type of natural aromatic product (concrete), obtained from the flowers of four Nicotiana species, in a direct comparison between them. The yields of extracted concrete were sufficiently high, varying between the species, 1.4% (N. rustica L.), 2.5% (N. glutinosa L.), 1.6% (N. alata Link&Otto genotype with white flowers), 2.7% (N. alata genotype with pink flowers), 3.2% (N. tabacum, Oriental type), and 5.2% (N. tabacum, Virginia type). The major components of the obtained concretes belonged to different chemical classes: N. rustica and N. tabacum (OR), the hydrocarbons n-tetratriacontane (14.5%; 15.0%) and n-triacontane (12.1%; 13.3%), and 3-methyl-pentanoic acid (11.1%; 12.2%); N. glutinosa, the diterpenes sclareol (25.9%), 3-α-hydroxy-manool (16.3%), and 13-epimanool (14.9%); N. alata (WF), the phenylpropanoid terephthalic acid and di(2-ethylhexyl) ester (42.9%); N. alata (PF), the diterpene tributyl acetylcitrate (30.7%); and N. tabacum (FCV), the hydrocarbons n-hexacosane (12.9%) and n-pentacosane (12.9%). Each of the flower concretes revealed a characteristic odor profile. This is the first report about Nicotiana species as a source for obtaining flower concretes; these initial results about the concrete yield, olfactory profile, and chemical composition are a prerequisite for the possible processing of Nicotiana flowers into new aromatic products for use in perfumery and cosmetics. The study provides new data in favor of the potential of the four Nicotiana species as aromatic plants, as well as a possible alternative use of flowers, a valuable, but discarded, plant material in other applications.
Keyphrases
  • wastewater treatment
  • genetic diversity
  • escherichia coli
  • multidrug resistant
  • amino acid
  • deep learning
  • cystic fibrosis
  • climate change
  • single molecule