Login / Signup

Exploring the mechanism of Liang Xue Wu Hua Tang in the treatment of rosacea via network pharmacology and molecular docking.

Can CuiZhu Fan
Published in: Medicine (2024)
Rosacea is a chronic and recurrent inflammatory skin disease affecting the center of the face that causes burning and itching sensations and changes in aesthetics. Liang Xue Wu Hua Tang (LXWHT) is a classic herbal formulation that is efficacious and has been widely used in the clinical treatment of rosacea; however, the pharmacological mechanisms remain unclear. The aim of the present study was to investigate the mechanism of action of LXWHT using network pharmacology and molecular docking. The Traditional Chinese Medicine System Pharmacology database was searched to identify the active ingredients and pharmacological targets of LXWHT, and the GeneCard, Disgenet, and Gene Expression Omnibus databases were applied to screen rosacea-related targets. Cytoscape software was used to visualize the protein-protein interaction network, and network topology analysis was used to identify core targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the core targets. Molecular docking simulations and visualization were performed using Maestro and PyMOL, respectively. A total of 43 active compounds and 28 potential targets for LXWHT treatment of rosacea were selected for analysis. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes results indicated that LXWHT may exert therapeutic effects on rosacea by intervening in immune pathways including tumor necrosis factor pathway, interleukin-17 pathways, and Toll-like receptor signaling pathways. Chemokine ligand 2, interferon-γ, interleukin-1ß, peroxisome proliferator-activated receptor-γ, and matrix metallopeptidase 9 may be the core therapeutic target. Quercetin, stigmasterol, kaempferol, beta-sitosterol, luteolin, beta-carotene, baicalein, acetin, and isorhamnetin were predicted to be the key active ingredients. LXWHT may exert therapeutic effects in the treatment of rosacea by modulating immunity and angiogenesis, laying the foundation for further research.
Keyphrases