Login / Signup

Fabrication of Few-Layer Graphene-Supported Copper Catalysts Using a Lithium-Promoted Thermal Exfoliation Method for Methanol Oxidative Carbonylation.

Ruina ShiJinxian ZhaoYanhong QuanXuhui WangJiangwei AnJunjie LiuWei SunZhong LiJun Ren
Published in: ACS applied materials & interfaces (2020)
Exfoliation of graphene oxide (GO) via thermal expansion is regarded as the most promising approach to obtain few-layer graphene (FLG) in bulk. Herein, we introduce an efficient strategy for improving the exfoliation process by adding a tiny amount of lithium nitrate in the precursors, which significantly enhances the removal of oxygen-containing functional groups and produces 1-2 layer graphene. FLG-supported highly dispersed Cu nanoparticles (NPs, ≈4.2 nm) can be further synthesized through exfoliating the mixture of GO, lithium nitrate, and copper(II) nitrate, which displayed superior catalytic activity and stability in the synthesis of dimethyl carbonate (DMC) using liquid methanol oxidative carbonylation. The characterization results demonstrate that during the thermal expansion process, lithium nitrate was decomposed to Li2O and immediately reacted with CO2 released by the decomposition of GO to form stable Li2CO3, which promotes efficient charge transfer and produces Cuδ+ (0 < δ < 1) species in the Cu/Li-PGO catalyst. Density functional theory calculations prove that the presence of Cuδ+ markedly facilitates CO adsorption over the resulting catalyst and causes a decrease of the energy barrier of the rate-limiting step for DMC formation (CO insertion). These findings give a theoretical explanation of the enhanced catalytic performance of the Cu/Li-PGO catalyst. The present work provides a simple and practical avenue to the exfoliation of graphene and the dispersions of metal NPs on graphene sheets.
Keyphrases