RSS Indoor Localization Based on a Single Access Point.
Akis KokkinisLoizos KanarisAntonio LiottaStavros StavrouPublished in: Sensors (Basel, Switzerland) (2019)
This research work investigates how RSS information fusion from a single, multi-antenna access point (AP) can be used to perform device localization in indoor RSS based localization systems. The proposed approach demonstrates that different RSS values can be obtained by carefully modifying each AP antenna orientation and polarization, allowing the generation of unique, low correlation fingerprints, for the area of interest. Each AP antenna can be used to generate a set of fingerprint radiomaps for different antenna orientations and/or polarization. The RSS fingerprints generated from all antennas of the single AP can be then combined to create a multi-layer fingerprint radiomap. In order to select the optimum fingerprint layers in the multilayer radiomap the proposed methodology evaluates the obtained localization accuracy, for each fingerprint radio map combination, for various well-known deterministic and probabilistic algorithms (Weighted k-Nearest-Neighbor-WKNN and Minimum Mean Square Error-MMSE). The optimum candidate multi-layer radiomap is then examined by calculating the correlation level of each fingerprint pair by using the "Tolerance Based-Normal Probability Distribution (TBNPD)" algorithm. Both steps take place during the offline phase, and it is demonstrated that this approach results in selecting the optimum multi-layer fingerprint radiomap combination. The proposed approach can be used to provide localisation services in areas served only by a single AP.