Login / Signup

Self-Assembled Supramolecular Polyoxometalate Hybrid Architecture as a Multifunctional Oxidation Catalyst.

Guowang DiaoHuan LiHongjie XuChao ShenRu-Zhang LiuJu XieFengmin ZhangChong ChenHongxia ZhaoTongfei ZuoGuowang Diao
Published in: ACS applied materials & interfaces (2019)
Polyoxometalates (POMs) are widely applied as tuneable and versatile catalysts for a variety of oxidation reactions in an aqueous/organic two-phase system. However, the practical applications of POMs-based biphasic catalysis are hampered by low space-time yields and mass-transport limitation between two layers due to extremely low solubility of the organic reactants in the aqueous phase. Here, we first introduced β-cyclodextrin (β-CD) as an inverse phase transfer agent and a supramolecular nanoreactor to construct a supramolecular POM inorganic-organic hybrid framework (KCl4)Na7[(β-CD)3(SiW12O40)]·9H2O {3CD@SiW12} for various oxidation catalyses. In contrast to free CD, Keggin [SiW12O40]4- catalysts, and their mixture, the {3CD@SiW12} catalyst, efficiently catalyze oxidation reactions of alcohol, alkene, and thiophene. A comprehensive strategy of experimental, crystallographic, and density functional theory (DFT) calculations elucidates that the catalytic pathway involved three combined aspects of supramolecular recognition, phase transfer property, and POM catalysis. The strategic combination of supramolecular characteristic and POM-based catalysts to fabricate supramolecular POM hybrid materials opens up new economic and green tuning options, thus paving the way to informed catalyst design.
Keyphrases