Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Human Milk Neutral and Sialylated Free Oligosaccharides Using Girard's Reagent P On-Target Derivatization.
Xi GaoYu LuMing WeiMeiFang YangCaiXia ZhengChengjian WangYing ZhangLinjuan HuangZhongfu WangPublished in: Journal of agricultural and food chemistry (2019)
The functional role of human milk oligosaccharides (HMOs) is closely associated with their type, composition, and structure. However, a detailed analysis of HMOs is difficult because neutral oligosaccharides (NHMOs) are mixed with sialylated oligosaccharides (SHMOs) in milk. Here, NHMOs were separated from SHMOs by DEAE-52 anion chromatography, and lactose was removed by graphite carbon solid-phase extraction. Lactose-free NHMOs were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) based on Girard's reagent P on-target derivatization (GPOD), and SHMOs were analyzed by MALDI-TOF-MS following selective sialic acid derivatization and GPOD. Sixty-four oligosaccharides were detected: 36 NHMOs, of which 28 were fucosylated, and 28 SHMOs, of which 8 with α-2,3-linked monosialic acid, 2 with α-2,3-linked disialic acid, 10 with α-2,6-linked monosialic acid, 2 with α-2,6-linked disialic acid, and 5 with both α-2,3- and α-2,6-linked disialic acid. These findings provide the groundwork for further characterization of the structure and activity of HMOs.