Login / Signup

In Situ Growth of ZnIn2S4 on MOF-Derived Ni-Fe LDH to Construct Ternary-Shelled Nanotubes for Efficient Photocatalytic Hydrogen Evolution.

Shuang ZhaoQian LiangWen GaoMan ZhouChao YaoSong XuZhongyu Li
Published in: Inorganic chemistry (2021)
A rational design of a novel ternary-shelled nanotube is attractive in photocatalytic water splitting. Herein, ZnIn2S4 nanosheets were in situ grown on the surface of MIL-88A-derived Ni-Fe layered double hydroxide (LDH) to fabricate ternary-shelled nanotubes (ZIS@Ni-Fe LDH) via a self-assembly strategy. Characterization indicates that the ZIS@Ni-Fe LDH heterostructure exhibits a high surface area and a well-defined ternary-shelled hollow structure. The optimal heterostructure presents a remarkably improved photocatalytic hydrogen production rate (2035.81 μmol g-1 h-1) compared with bare ZnIn2S4 and MIL-88A-derived Ni-Fe LDH under visible light illumination. The effect of ZnIn2S4 loading on the photocatalytic performance and stability of ZIS@Ni-Fe LDH is systematically studied. The ZIS@Ni-Fe LDH heterostructure can make better use of the inner space, provide abundant reactive sites, improve light harvesting, accelerate interfacial electron transfer, and further promote photocatalytic hydrogen evolution. Based on the electrocatalytic performance, the probable photocatalytic mechanism and the electron transfer pathway can be proposed. Our work provides a facile and efficient strategy to construct ternary-shelled heterojunction photocatalysts.
Keyphrases
  • visible light
  • metal organic framework
  • electron transfer
  • reduced graphene oxide
  • transition metal
  • mass spectrometry
  • simultaneous determination