Study on the Synthesis and Thermal Stability of Silicone Resin Containing Trifluorovinyl Ether Groups.
Rui HuangJinshui YaoQiuhong MuDan PengHui ZhaoZhizhou YangPublished in: Polymers (2020)
Silicone resin is a high-temperature resistant material with excellent performance. The improvement of its thermal stability has always been the pursuit of researchers. In this paper, a sequence of silicone resins containing trifluorovinyl ether groups were prepared by the co-hydrolysis-polycondensation of methyl alkoxysilane monomers and {4-[trifluorovinyl(oxygen)]phenyl}methyldiethoxysilane. The structures of the silicone resins were characterized by FT-IR and 1H NMR. The curing process of them was studied by DSC and FT-IR spectra, and results showed that the curing of the resins included the condensation of the Si-OH groups and the [2 + 2] cyclodimerization reaction of the TFVE groups, which converted to perfluorocyclobutane structure after curing. The thermal stability and thermal degradation behavior of them was studied by TGA and FT-IR spectra. Compared with the pure methyl silicone resin, silicone resins containing TFVE groups showed better thermal stability under both N2 and air atmosphere. Their hydrophobic properties were characterized by contact angle test. Results showed that PFCB structure also improved the hydrophobicity of the silicone resin.