Login / Signup

How Plasmon Ag Nanoparticles can Enhance the Power Performance of a Thermoelectric Generator.

José F Serrano-ClaumarchirantChungyeon ChoAndrés CantareroMario CulebrasRafael AbarguesClara M Gómez
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
The development of wearable thermoelectric generators (wTEG) represents a promising strategy to replace batteries and supercapacitors required to supply electrical energy for portable electronic devices. However, the main drawback of wTEGs is that the thermal gradient between the skin and the ambient is minimal, reducing the power output produced by the generator. Therefore, it is necessary to improve the thermal management of wTEG in order to increase its efficiency. This work deals with the preparation of a thermoelectric generator that harnesses the plasmonic heating effect to enhance the thermal gradient of the final device. The thermoelectric layer is created through the in situ polymerization of terthiophene (3T) within a polyurethane matrix, utilizing silver (Ag) (I) and copper (II) perchlorate as oxidants. The plasmonic film, composed of Ag-NP (nanoparticles), is formed via photocatalytic reduction of silver nitrate in the presence of titanium oxide. These layers are then meticulously assembled to yield the hybrid plasmonic/thermoelectric generator.
Keyphrases