Two-Dimensional Fluctuation Correlation Spectroscopy (2D-FlucCS): A Method to Determine the Origin of Relaxation Rate Dispersion.
Ruchir GuptaSachin Dev VermaPublished in: ACS measurement science au (2024)
Relaxation rate dispersion, i.e., nonexponential or multicomponent kinetics, is observed in complex systems when measuring relaxation kinetics. Often, the origin of rate dispersion is associated with the heterogeneity in the system. However, both homogeneous (where all molecules experience the same rate but inherently nonexponential) and heterogeneous (where all molecules experience different rates) systems can exhibit rate dispersion. A multidimensional correlation analysis method has been demonstrated to detect and quantify rate dispersion observed in molecular rotation, diffusion, solvation, and reaction kinetics. One-dimensional (1D) autocorrelation function detects rate dispersion and measures its extent. Two-dimensional (2D) autocorrelation function measures the origin of rate dispersion and distinguishes homogeneous from heterogeneous. In a heterogeneous system, implicitly there exist subensembles of molecules experiencing different rates. A three-dimensional (3D) autocorrelation function measures subensemble exchange if present and reveals if the system possesses static or dynamic heterogeneity. This perspective discusses the principles, applications, and potential and also presents a future outlook of two-dimensional fluctuation correlation spectroscopy (2D-FlucCS). The method is applicable to any experiment or simulation where a time series of fluctuation in an observable (emission, scattering, current, etc.) around a mean value can be obtained in steady state (equilibrium or nonequilibrium), provided the system is ergodic.