Strain-Sensitive On-Surface Ladderization by Non-Dehydrogenative Heterocyclization.
Yujing MaKazuma SugawaraYusuke IshigakiKewei SunTakanori SuzukiShigeki KawaiPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2023)
On-surface cyclodehydrogenation recently became an important reaction to planarize π-conjugated molecules and oligomers. However, the high-activation barrier to cleave the C-H bond often requires high-temperature annealing, consequently restricting structures of precursor molecules and/or leading to random fusion at their edges. Here, we present a synthesis of pyrrolopyrrole-bridged ladder oligomers from 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane molecules on Ag(111) with bond-resolved scanning tunnelling microscopy. This non-dehydrogenative cyclization between pyrazine and ethynylene/cumulene groups has a low-activation barrier for forming intermediary dimeric oligomer containing dipyrazinopyrrolopyrrolopyrazine units, thus giving new insight into the strain-sensitive in ladder-oligomer formation.