Using the Potential Transformation of Dissolved Organic Matter to Understand Carbon Emissions from Inland Rivers.
Qian QuXiangang HuRuihong FengPublished in: Environmental science & technology (2024)
Understanding the transformation of river dissolved organic matter (DOM) is important for assessing the emissions of greenhouse gases (GHGs) in inland waters. However, the relationships between the variations in DOM components and GHGs remain largely unknown. Here, parallel factor analysis (PARAFAC) was applied to investigate the DOM components in 46 inland rivers in China. We found that the GHG emissions in peri-urban rivers were 1.10-2.15 times greater than those in urban rivers. Microbial and environmental factors (e.g., living cell numbers, microbial activity and pH) explained more than 70% of the total variance in GHG emissions in rivers. DOM variations relationships between different components ware revealed based on compositional data principal component analysis (CoDA-PCA). Microbial-mediated DOM production and degradation were quantified, and the degradation levels in peri-urban rivers were 11.8-25.2% greater than those in urban rivers. Differences in carbon emission potential between urban and peri-urban rivers were related to DOM variances and transformations and were affected by water chemistry (e.g., NH 4 -N and As). This study clarifies the regulatory effects of DOM composition variations and transformations on GHG emissions, and enhances the understanding of the DOM biogeochemical cycle.