Login / Signup

Dynamics study of the post-transition-state-bifurcation process of the (HCOOH)H + → CO + H 3 O + /HCO + + H 2 O dissociation: application of machine-learning techniques.

Tatsuhiro MurakamiShunichi IbukiYu HashimotoYuya KikumaToshiyuki Takayanagi
Published in: Physical chemistry chemical physics : PCCP (2023)
The process of protonated formic acid dissociating from the transition state was studied using ring-polymer molecular dynamics (RPMD), classical MD, and quasi-classical trajectory (QCT) simulations. Temperature had a strong influence on the branching fractions for the HCO + + H 2 O and CO + H 3 O + dissociation channels. The RPMD and classical MD simulations showed similar behavior, but the QCT dynamics were significantly different owing to the excess energies in the quasi-classical trajectories. Machine-learning analysis identified several key features in the phase information of the vibrational motions at the transition state. We found that the initial configuration and momentum of a hydrogen atom connected to a carbon atom and the shrinking coordinate of the CO bond at the transition state play a role in the dynamics of HCO + + H 2 O production.
Keyphrases
  • molecular dynamics
  • density functional theory
  • machine learning
  • artificial intelligence
  • big data
  • healthcare
  • electron transfer