Login / Signup

Stability of a stochastic brucellosis model with semi-Markovian switching and diffusion.

Feng ChenJing HuYuming ChenQimin Zhang
Published in: Journal of mathematical biology (2024)
To explore the influence of state changes on brucellosis, a stochastic brucellosis model with semi-Markovian switchings and diffusion is proposed in this paper. When there is no switching, we introduce a critical value R s and obtain the exponential stability in mean square when R s < 1 by using the stochastic Lyapunov function method. Sudden climate changes can drive changes in transmission rate of brucellosis, which can be modelled by a semi-Markov process. We study the influence of stationary distribution of semi-Markov process on extinction of brucellosis in switching environment including both stable states, during which brucellosis dies out, and unstable states, during which brucellosis persists. The results show that increasing the frequencies and average dwell times in stable states to certain extent can ensure the extinction of brucellosis. Finally, numerical simulations are given to illustrate the analytical results. We also suggest that herdsmen should reduce the densities of animal habitation to decrease the contact rate, increase slaughter rate of animals and apply disinfection measures to kill brucella.
Keyphrases
  • drinking water
  • climate change
  • liquid chromatography
  • mass spectrometry