Login / Signup

Review of Gold Nanoparticles in Surface Plasmon-Coupled Emission Technology: Effect of Shape, Hollow Nanostructures, Nano-Assembly, Metal-Dielectric and Heterometallic Nanohybrids.

Kalathur Mohan GaneshSeemesh BhaskarVijay Sai Krishna CheeralaPrajwal BattamparaRoopa ReddySundaresan Chittor NeelakantanNarendra ReddySai Sathish Ramamurthy
Published in: Nanomaterials (Basel, Switzerland) (2024)
Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.
Keyphrases