Login / Signup

Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

Wei Lin LeeJonathan M GrimesRobert C Robinson
Published in: Nature structural & molecular biology (2015)
Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.
Keyphrases
  • cell migration
  • mass spectrometry
  • high resolution
  • magnetic resonance imaging
  • ms ms
  • signaling pathway
  • cell proliferation
  • cell death