Login / Signup

A spatio-temporal graph convolutional network for ultrasound echocardiographic landmark detection.

Honghe LiJinzhu YangZhanfeng XuanMingjun QuYonghuai WangChaolu Feng
Published in: Medical image analysis (2024)
Landmark detection is a crucial task in medical image analysis, with applications across various fields. However, current methods struggle to accurately locate landmarks in medical images with blurred tissue boundaries due to low image quality. In particular, in echocardiography, sparse annotations make it challenging to predict landmarks with position stability and temporal consistency. In this paper, we propose a spatio-temporal graph convolutional network tailored for echocardiography landmark detection. We specifically sample landmark labels from the left ventricular endocardium and pre-calculate their correlations to establish structural priors. Our approach involves a graph convolutional neural network that learns the interrelationships among landmarks, significantly enhancing landmark accuracy within ambiguous tissue contexts. Additionally, we integrate gate recurrent units to grasp the temporal consistency of landmarks across consecutive images, augmenting the model's resilience against unlabeled data. Through validation across three echocardiography datasets, our method demonstrates superior accuracy when contrasted with alternative landmark detection models.
Keyphrases