Login / Signup

Hybrid Coatings of SiO 2 -Recycled PET Unsaturated Polyester Resin by Sol-Gel Process.

Adrián Bórquez-MendivilAbel Hurtado-MacíasJesús Eduardo Leal-PérezJoaquín Flores-ValenzuelaRamón Álvaro Vargas-OrtízFrancisca Guadalupe Cabrera-CovarrubiasJorge Luis Almaral-Sánchez
Published in: Polymers (2022)
Hybrid coatings of SiO 2 and recycled unsaturated polyester resin (R-UPR) from recycled polyethylene-terephthalate (PET) were prepared by the sol-gel process on glass substrates. First, SiO 2 was synthesized by the sol-gel process using a tetraethyl orthosilicate (TEOS) solution. Next, bis(2-hydroxypropyl-terephthalate) (BHPT) was synthesized from mechanical and chemical recycling (glycolysis) of post-consumer PET bottles in propylene glycol (PG) using ZnA as catalyst, in a Vessel-type reactor (20-200 °C); maleic anhydride (MA) was added and, following the same procedure, the unsaturated polyester (UP) was synthetized, which was cooled to room temperature. Next, styrene (St) and benzoyl-peroxide (PBO)-initiator were added to obtain R-UPR. TEOS (T) and three hybrid solutions were synthesized, with molar ratios of 0:1:0 (T), 1:2:0.25 (H1), 1:1:0.25 (H2), and 1:0:0.25 (H3) for R-UPR:TEOS:3-trimethoxy-(silyl)-propyl-methacrylate (TMSPM), respectively, with which TC, HC1, HC2, and HC3 coatings were elaborated using the immersion technique and polymerized (120 °C for 24 h). The solutions were characterized by FT-IR and TGA, and the coatings by SEM, nanoindentation, AFM, adhesion, and contact angle. The results showed that SiO 2 enhanced mechanical (hardness and Young's modulus) and thermal properties of the R-UPR. The coatings adhered perfectly to the substrate, with thicknesses of micrometer units and a flat surface; in addition, hydrophilicity decreased as SiO 2 decreased.
Keyphrases