Login / Signup

Validation of physical activity levels from shank-placed Axivity AX6 accelerometers in older adults.

Fatima GafoorMatthew C RuderDylan Kobsar
Published in: PloS one (2024)
This cross-sectional study aimed to identify and validate cut-points for measuring physical activity using Axivity AX6 accelerometers positioned at the shank in older adults. Free-living physical activity was assessed in 35 adults aged 55 and older, where each participant wore a shank-mounted Axivity and a waist-mounted ActiGraph simultaneously for 72 hours. Optimized cut-points for each participant's Axivity data were determined using an optimization algorithm to align with ActiGraph results. To assess the validity between the physical activity assessments from the optimized Axivity cut-points, a leave-one-out cross-validation was conducted. Bland-Altman plots with 95% limits of agreement, intraclass correlation coefficients (ICC), and mean differences were used for comparing the systems. The results indicated good agreement between the two accelerometers when classifying sedentary behaviour (ICC = 0.85) and light physical activity (ICC = 0.80), and moderate agreement when classifying moderate physical activity (ICC = 0.67) and vigorous physical activity (ICC = 0.70). Upon removal of a significant outlier, the agreement was slightly improved for sedentary behaviour (ICC = 0.86) and light physical activity (ICC = 0.82), but substantially improved for moderate physical activity (ICC = 0.81) and vigorous physical activity (ICC = 0.96). Overall, the study successfully demonstrated the capability of the resultant cut-point model to accurately classify physical activity using Axivity AX6 sensors placed at the shank.
Keyphrases
  • physical activity
  • body mass index
  • sleep quality
  • machine learning
  • deep learning
  • big data
  • electronic health record
  • artificial intelligence
  • low cost
  • middle aged