Login / Signup

Ampakine pretreatment enables a single hypoxic episode to produce phrenic motor facilitation with no added benefit of additional episodes.

Prajwal P ThakreMichael D SunshineDavid D Fuller
Published in: Journal of neurophysiology (2021)
Repeated short episodes of hypoxia produce a sustained increase in phrenic nerve output lasting well beyond acute intermittent hypoxia (AIH) exposure (i.e., phrenic long-term facilitation; pLTF). Pretreatment with ampakines, drugs which allosterically modulate AMPA receptors, enables a single brief episode of hypoxia to produce pLTF, lasting up to 90 min after hypoxia. Here, we tested the hypothesis that ampakine pretreatment would enhance the magnitude of pLTF evoked by repeated bouts of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats. Initial experiments demonstrated that ampakine CX717 (15 mg/kg iv) caused an acute increase in phrenic nerve inspiratory burst amplitude reaching 70 ± 48% baseline (BL) after 2 min (P = 0.01). This increased bursting was not sustained (2 ± 32% BL at 60 min, P = 0.9). When CX717 was delivered 2 min before a single episode of isocapnic hypoxia (5 min, [Formula: see text] = 44 ± 9 mmHg), facilitation of phrenic nerve burst amplitude occurred (96 ± 62% BL at 60 min, P < 0.001). However, when CX717 was given 2 min before three, 5-min hypoxic episodes ([Formula: see text] = 45 ± 6 mmHg) pLTF was attenuated and did not reach statistical significance (24 ± 29% BL, P = 0.08). In the absence of CX717 pretreatment, pLTF was observed after three (74 ± 33% BL at 60 min, P < 0.001) but not one episode of hypoxia (1 ± 8% BL at 60 min, P = 0.9). We conclude that pLTF is not enhanced when ampakine pretreatment is followed by repeated bouts of hypoxia. Rather, the combination of ampakine and a single hypoxic episode appears to be ideal for producing sustained increase in phrenic motor output.NEW & NOTEWORTHY Pretreatment with ampakine CX717 created conditions that enabled an acute bout of moderate hypoxia to evoke phrenic motor facilitation, but this response was not observed when ampakine pretreatment was followed by intermittent hypoxia. Thus, in anesthetized and spinal intact rats, the combination of ampakine and one bout of hypoxia appears ideal for triggering respiratory neuroplasticity.
Keyphrases
  • endothelial cells
  • liver failure
  • intensive care unit
  • spinal cord
  • drug induced
  • high intensity
  • high frequency
  • peripheral nerve
  • hepatitis b virus
  • human milk