Login / Signup

In Situ Electrospinning MOF-Derived Highly Dispersed α-Cobalt Confined in Nitrogen-Doped Carbon Nanofibers Nanozyme for Biomolecule Monitoring.

Yanping XiaFeng ShiRuixin LiuHaibing ZhuKai LiuChuanli RenJuan LiZhanjun Yang
Published in: Analytical chemistry (2024)
Designing a metal-organic framework (MOF)-derived nanozyme with highly dispersed active sites and high catalytic activity as well as robust structure for colorimetric biosensing of diverse biomolecules remains a substantial challenge. Here, an MOF-derived highly dispersed and pure α-cobalt confined in a nitrogen-doped carbon nanofiber (α-Co@NCNF) nanozyme with superior glucose oxidase (GOD)- and peroxidase (POD)-like activities was constructed for colorimetric assay of multiple biomolecules. Specifically, the α-Co@NCNF nanozyme was synthesized, utilizing in situ electrospinning Co-MOFs into polyacrylonitrile nanofiber (PAN) followed by a pyrolysis process. Taking advantage of the in situ electrospinning strategy, the α-Co nanoparticles were confined in continuous porous NCNF to restrict the growth and prevent the aggregation and oxidation during the pyrolysis process. The resulting special structure considerably improved the enzyme-like performance. A series of experiments validate that the enzyme-like activity of the α-Co@NCNF nanozyme was superior to that of Co@CoO@NCNF (derivatives from Co-MOFs grown on the surface of PAN nanofiber) and nature enzymes. Furthermore, α-Co@NCNF nanozyme-based colorimetric biosensing was developed for monitoring glucose, hydrogen peroxide (H 2 O 2 ), and glutathione (GSH) and the corresponding linear ranges are 0.1-50 and 50-900 μM and 5-55 and 0.1-20 μM accompanied by the corresponding low detection of 0.03, 1.66, and 0.03 μM. The proposed method for the construction of α-Co@NCNF nanozyme with dual enzyme-like properties provides a new insight for designing novel nanozymes and has prospects for application in colorimetric biosensing.
Keyphrases