Systemic inflammation and oxidative stress induced by inhaled paraquat in rat improved by carvacrol, possible role of PPARγ receptors.
Fatemeh AminArghavan MemarziaHamideh Kazemi RadFarzaneh ShakeriMohammad Hossein BoskabadyPublished in: BioFactors (Oxford, England) (2021)
Control rats were exposed to saline aerosol, two groups were exposed to paraquat (PQ), 27 (PQ-L) and 54 (PQ-H) mg/m3 aerosols and six groups were treated with carvacrol, 20 (C-L) and 80 (C-H) mg/kg/day, pioglitazone, 5 (Pio-L) and 10 (Pio-H) mg/kg/day, C-L+Pio-L and dexamethasone, 0.03 mg/kg/day, for 16 days after the end of exposure to PQ-H. Different variables were measured after the end of treatment period. Total and differential white blood cells counts, nitrite, malondialdehyde, interleukin (IL)-10, and interferon-gamma levels were significant increased, but thiol, superoxide dismutase, catalase, IL-17, and tumor necrosis factor alpha were decreased in the blood due to both doses of PQ (p < 0.05-p < 0.001). Most measured parameters were significantly improved in treated groups with both doses of carvacrol, pioglitazone, the combination of C-L+Pio-L and dexamethasone compared to PQ-H group (p < 0.05-p < 0.001). Treatment with C-L+Pio-L showed significantly higher effects compared to each one alone (p < 0.05-p < 0.001). Systemic oxidative stress and inflammation due to inhaled PQ were improved by carvacrol and pioglitazone. Higher effects of C-L+Pio-L than each one alone suggests carvacrol modulating PPAR-γ receptors.