Surface Molecular Engineering for Fully Textured Perovskite/Silicon Tandem Solar Cells.
Jun ChenShaofei YangLong JiangKe FanZhiliang LiuWentao LiuWei LiHaitao HuangHong ZhangKai YaoPublished in: Angewandte Chemie (International ed. in English) (2024)
Developing large-scale monolithic perovskite/silicon tandem devices based on industrial Czochralski silicon wafers will likely have to adopt double-side textured architecture, given their optical benefits and low manufacturing costs. However, the surface engineering strategies that are widely used in solution-processed perovskites to regulate the interface properties are not directly applicable to micrometric textures. Here, we devise a surface passivation strategy by dynamic spray coating (DSC) fluorinated thiophenethylammonium ligands, combining the advantages of providing conformal coverage and suppressing phase conversion on textured surfaces. From the viewpoint of molecular engineering, theoretical calculation and experimental results demonstrate that introducing trifluoromethyl group provide more effective surface passivation through strong interaction and energy alignment by forming a dipole layer. Consequently, the DSC treatment of this bifunctional molecule enables the tandem cells based on industrial silicon wafers to achieve a certified stabilized power conversion efficiency of 30.89 %. In addition, encapsulated devices display excellent operational stability by retaining over 97 % of their initial performance after 600 h continuous illumination.