Carbon Nanotube Fibers for Neural Recording and Stimulation.
Noe T AlvarezElke BuschbeckSydney MillerAnh Duc LeVandna K GuptaChethani RuhunageIlya VilinskyYishan MaPublished in: ACS applied bio materials (2020)
Recordings and stimulations of neuronal electrical activity are topics of great interest in neuroscience. Many recording techniques, and even treatment of neurological disorders, can benefit from a microelectrode that is flexible, chemically inert, and electrically conducting and preferentially transfers electrons via capacitive charge injection. Commercial electrodes that currently exist and other electrodes that are being tested with the purpose of facilitating and improving the electron transport between solid materials and biological tissues still have some limitations. This paper discusses carbon nanotube (CNT)-based microelectrodes to record and stimulate neurons and compares their electron transport capabilities to noble metals such as Au and Ag. The recording ability of electrodes is tested through electroretinography on Sarcophaga bullata fly eyes by using Au and Ag wires and CNT fibers as electrodes. Stimulation is demonstrated through the implantation of Au wire and CNT fibers into the antennas of the Madagascar hissing cockroach ( Gromphadorhina portentosa ) to control their locomotion. Our results demonstrate that a particular property of the CNT fiber is its high rate of electron transfer, leading to an order of magnitude lower impedance compared to Au and Ag and an impressive 15.09 charge injection capacity. We also established that this carbon nanomaterial assembly performs well for in vivo electrophysiology, rendering it a promising prospect for neurophysiological applications.
Keyphrases
- carbon nanotubes
- electron transfer
- sensitive detection
- reduced graphene oxide
- visible light
- quantum dots
- solar cells
- highly efficient
- gold nanoparticles
- optical coherence tomography
- spinal cord
- magnetic resonance imaging
- spinal cord injury
- health risk
- blood brain barrier
- computed tomography
- current status
- solid state
- climate change
- cataract surgery