Research and Design of Aggregation-Induced Phosphorescent Materials for Time-Resolved Two-Photon Excited Luminescence Imaging.
Xue-Li HaoAi-Min RenLiang ZhouPublished in: The journal of physical chemistry letters (2022)
Pure organic two-photon excited room temperature phosphorescent (RTP) materials have attracted great attention for time-resolved imaging due to their long emission lifetime and high resolution. The materials with an aromatic carbonyl group exhibit aggregation-induced emission (AIE) and RTP characteristics simultaneously. Here, we deeply explored the nature of aggregation-induced phosphorescence (AIP), especially the relationship between molecular configuration and optical properties. It was found that aggregation effect can suppress geometrical vibrations and regulate energy difference between S 1 and T 1 . The aromatic carbonyl group plays significant roles in changing electronic configuration, resulting in large Stokes shift and spin-orbit coupling. It also leads to small transition dipole moment, decreasing two-photon absorption cross section and radiative decay rate. To improve two-photon absorption properties, we further designed a π-conjugated compound with large two-photon absorption cross section in the biological window (36.40 GM/656 nm) and AIP characteristics, which is a potential material in the application of time-resolved two-photon excited imaging.