Through our continuous effort in developing a new class of foldamers, we have both designed and synthesized homogenous sulfono-γ-AApeptides using tetraphenylethylene (TPE) moieties attached to the backbone as luminogenic sidechains. Based on previous crystal structures, we have found that these foldamers adopted a left-handed 414-helix. Due to the constraint of the helical scaffold, the rotation of the TPE moieties were restricted, leading to fluorescent emissive properties with high quantum yields not only at the aggregate state but also in solution. Investigation of the relationship between the structure and fluorescence behavior reveals that emission was induced by the combined effect of the aggregation-induced emission (AIE) and the rotated restriction from the backbone. Furthermore, as the packing mode of the luminogens could be precisely adjusted by the helical backbone, these foldamers were found to be circularly polarizable with relatively large luminescence dissymmetry factor (g lum). Interestingly, possessing cationic amphipathic structures similar to that of host-defense peptides (HDPs), these sulfono-γ-AApeptides were able to inhibit the growth of Gram-positive bacteria methicillin-resistant S. aureus (MRSA) through membrane interactions.