In vivo detection of d-amino acid oxidase with hyperpolarized d-[1-13 C]alanine.
Alice RadaelliRolf GruetterHikari A I YoshiharaPublished in: NMR in biomedicine (2020)
d-amino acid oxidase (DAO) is a peroxisomal enzyme that catalyzes the oxidative deamination of several neutral and basic d-amino acids to their corresponding α-keto acids. In most mammalian species studied, high DAO activity is found in the kidney, liver, brain and polymorphonuclear leukocytes, and its main function is to maintain low circulating d-amino acid levels. DAO expression and activity have been associated with acute and chronic kidney diseases and with several pathologies related to N-methyl-d-aspartate (NMDA) receptor hypo/hyper-function; however, its precise role is not completely understood. In the present study we show that DAO activity can be detected in vivo in the rat kidney using hyperpolarized d-[1-13 C]alanine. Following a bolus of hyperpolarized d-alanine, accumulation of pyruvate, lactate and bicarbonate was observed only when DAO activity was not inhibited. The measured lactate-to-d-alanine ratio was comparable to the values measured when the l-enantiomer was injected. Metabolites downstream of DAO were not observed when scanning the liver and brain. The conversion of hyperpolarized d-[1-13 C]alanine to lactate and pyruvate was detected in blood ex vivo, and lactate and bicarbonate were detected on scanning the blood pool in the heart in vivo; however, the bicarbonate-to-d-alanine ratio was significantly lower compared with the kidney. These results demonstrate that the specific metabolism of the two enantiomers of hyperpolarized [1-13 C]alanine in the kidney and in the blood can be distinguished, underscoring the potential of d-[1-13 C]alanine as a probe of d-amino acid metabolism.