Modulation of Angiotensin II-Induced Cellular Hypertrophy by Cannflavin-C: Unveiling the Impact on Cytochrome P450 1B1 and Arachidonic Acid Metabolites.
Ahmad H AlammariFadumo Ahmed IsseConor O'CroininNeal M DaviesAyman O S Ei-KadiPublished in: Drug metabolism and disposition: the biological fate of chemicals (2024)
This research aimed to clarify the impacts of cannflavin-C on angiotensin II (Ang II)-induced cardiac hypertrophy and their potential role in modulating cytochrome P450 1B1 (CYP1B1) and arachidonic acid (AA) metabolites. Currently there is no evidence to suggest that cannflavin-C, a prenylated flavonoid, has any significant effects on the heart or cardiac hypertrophy. The metabolism of arachidonic acid (AA) into midchain hydroxyeicosatetraenoic acids (HETEs), facilitated by CYP1B1 enzyme, plays a role in the development of cardiac hypertrophy, which is marked by enlarged cardiac cells. Adult human ventricular cardiomyocyte (AC16) cell line was cultured and exposed to cannflavin-C in the presence and absence of Ang II. The assessment of mRNA expression pertaining to cardiac hypertrophic markers and cytochromes P450 (P450s) was conducted via real-time polymerase chain reaction (PCR), whereas the quantification of P450 protein levels was carried out through western blot analysis. Ang II induced hypertrophic markers myosin heavy chain ( β / α -MHC), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) and increased cell surface area, whereas cannflavin-C mitigated these effects. Gene and protein expression analysis revealed that cannflavin-C downregulated CYP1B1 gene expression, protein level, and enzyme activity assessed by 7-methoxyresorufin O-deethylase (MROD). Arachidonic acid metabolites analysis, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), demonstrated that Ang II increased midchain (R/S)-HETE concentrations, which were attenuated by cannflavin-C. This study provides novel insights into the potential of cannflavin-C in modulating arachidonic acid metabolites and attenuating Ang II-induced cardiac hypertrophy, highlighting the importance of this compound as potential therapeutic agents for cardiac hypertrophy. SIGNIFICANCE STATEMENT: This study demonstrates that cannflavin-C offers protection against cellular hypertrophy induced by angiotensin II. The significance of this research lies in its novel discovery, which elucidates a mechanistic pathway involving the inhibition of CYP1B1 by cannflavin-C. This discovery opens up new avenues for leveraging this compound in the treatment of heart failure.
Keyphrases
- angiotensin ii
- angiotensin converting enzyme
- vascular smooth muscle cells
- heart failure
- high glucose
- ms ms
- endothelial cells
- gene expression
- liquid chromatography tandem mass spectrometry
- left ventricular
- diabetic rats
- small molecule
- drug induced
- dna methylation
- binding protein
- induced apoptosis
- signaling pathway
- brain injury
- amino acid
- young adults
- blood brain barrier
- cell death
- subarachnoid hemorrhage
- pi k akt
- cerebral ischemia