Login / Signup

Synthesis of High-Entropy Alloys with a Tailored Composition and Phase Structure Using a Single Configurable Target.

Khurshed AlamWoohyung JangGeonwoo JeongJinhui SerDoori KangTae-Hoon KimHoonsung Cho
Published in: ACS omega (2023)
Previously, refractory high-entropy alloys (HEAs) with high crystallinity were synthesized using a configurable target without heat treatment. This study builds upon prior investigations to develop nonrefractory elemental HEAs with low crystallinity using a novel target system. Different targets with various elemental compositions, i.e., Co 20 Cr 20 Ni 20 Mn 20 Mo 20 (target 1), Co 30 Cr 15 Ni 25 Mn 15 Mo 15 (target 2), and Co 15 Cr 25 Cu 20 Mn 20 Ni 20 (target 3), are designed to modify the phase structure. The elemental composition is varied to ensure face-centered cubic (FCC) or body-centered cubic (BCC) phase stabilization. In target 1, the FCC and BCC phases coexist, whereas targets 2 and 3 are characterized by a single FCC phase. Thin films based on targets 1 and 2 exhibit crystalline phases followed by annealing, as indicated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. In contrast, target 3 yields crystalline thin films without any heat treatment. The thin-film coatings are classified based on the atomic size difference (δ). The δ value for the target with the elemental composition CoCrMoMnNi is 9.7, i.e., ≥6.6, corresponding to an HEA with an amorphous phase. However, the annealed thin film is considered a multiprincipal elemental alloy. In contrast, δ for the CoCrCuMnNi HEA is 5, i.e., ≤6.6, upon the substitution of Mo with Cu, and a solid solution phase is formed without any heat treatment. Thus, the degree of crystallinity can be controlled through heat treatment and the manipulation of δ in the absence of heat treatment. The XRD results clarify the crystallinity and phase structure, indicating the presence of FCC or a combination of FCC and BCC phases. The outcomes are consistent with those obtained through the analysis of the valence electron concentration based on X-ray photoelectron spectroscopy. Furthermore, a selected area electron diffraction analysis confirms the presence of both amorphous and crystalline structures in the HEA thin films. Additionally, phase evolution and segregation are observed at 500 °C.
Keyphrases